Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere.

نویسندگان

  • Ezékiel Baudoin
  • Anat Lerner
  • M Sajjad Mirza
  • Hamdy El Zemrany
  • Claire Prigent-Combaret
  • Edouard Jurkevich
  • Stijn Spaepen
  • Jos Vanderleyden
  • Sylvie Nazaret
  • Yaacov Okon
  • Yvan Moënne-Loccoz
چکیده

The phytostimulatory properties of Azospirillum inoculants, which entail production of the phytohormone indole-3-acetic acid (IAA), can be enhanced by genetic means. However, it is not known whether this could affect their interactions with indigenous soil microbes. Here, wheat seeds were inoculated with the wild-type strain Azospirillum brasilense Sp245 or one of three genetically modified (GM) derivatives and grown for one month. The GM derivatives contained a plasmid vector harboring the indole-3-pyruvate/phenylpyruvate decarboxylase gene ipdC (IAA production) controlled either by the constitutive promoter PnptII or the root exudate-responsive promoter PsbpA, or by an empty vector (GM control). All inoculants displayed equal rhizosphere population densities. Only inoculation with either ipdC construct increased shoot biomass compared with the non-inoculated control. At one month after inoculation, automated ribosomal intergenic spacer analysis (ARISA) revealed that the effect of the PsbpA construct on bacterial community structure differed from that of the GM control, which was confirmed by 16S rDNA-based denaturing gradient gel electrophoresis (DGGE). The fungal community was sensitive to inoculation with the PsbpA construct and especially the GM control, based on ARISA data. Overall, fungal and bacterial communities displayed distinct responses to inoculation of GM A. brasilense phytostimulators, whose effects could differ from those of the wild-type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245.

Inoculation of wheat roots with Azospirillum brasilense results in an increase of plant growth and yield, which is proposed to be mainly due to the bacterial production of indole-3-acetic acid in the rhizosphere. Field inoculation experiments had revealed more consistent plant growth stimulation using A. brasilense strain Sp245 as compared with the strain Sp7. Therefore, the in situ expression ...

متن کامل

Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense.

Transcription of the Azospirillum brasilense ipdC gene, encoding an indole-3-pyruvate decarboxylase involved in the biosynthesis of indole-3-acetic acid (IAA), is induced by IAA as determined by ipdC-gusA expression studies and Northern analysis. Besides IAA, exogenously added synthetic auxins such as 1-naphthaleneacetic acid, 2,4-dichlorophenoxypropionic acid, and p-chlorophenoxyacetic acid we...

متن کامل

Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis.

An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decarboxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) product...

متن کامل

Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled.

Batch and fed batch cultures of Azospirillum brasilense Sp245 were conducted in a bioreactor. Growth response, IAA biosynthesis and the expression of the ipdC gene were monitored in relation to the environmental conditions (temperature, availability of a carbon source and aeration). A. brasilense can grow and produce IAA in batch cultures between 20 and 38 degrees C in a standard minimal medium...

متن کامل

Enhancement of Wheat Root Colonization and Plant Development by Azospirillum brasilense Cd. Following Temporary Depression of Rhizosphere Microflora.

Inoculation of wheat with Azospirillum brasilense, combined with the application of four fungal and bacterium-inhibiting substances to which A. brasilense is resistant in the soil, decreased the rhizosphere population, while it increased wheat root colonization by A. brasilense, even in cases of poor inoculation. The inoculation significantly increased the following wheat plant parameters as we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Research in microbiology

دوره 161 3  شماره 

صفحات  -

تاریخ انتشار 2010